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A Continuous Learning Framework for Activity
Recognition Using Deep Hybrid Feature Models

Mahmudul Hasan and Amit K. Roy-Chowdhury

Abstract—Most of the research on human activity
recognition has focused on learning a static model, considering
that all the training instances are labeled and present in advance,
while in streaming videos new instances continuously arrive
and are not labeled. Moreover, these methods generally use
application-specific hand-engineered and static feature models,
which are not suitable for continuous learning. Some recent
approaches on activity recognition use deep-learning-based
hierarchical feature models, but the large size of these networks
constrain them from being used in continuous learning scenarios.
In this work, we propose a continuous activity learning
framework for streaming videos by intricately tying together
deep hybrid feature models and active learning. This allows
us to automatically select the most suitable features and take
the advantage of incoming unlabeled instances to improve the
existing model incrementally. Given the segmented activities
from streaming videos, we learn features in an unsupervised
manner using deep hybrid networks, which have the ability to
take the advantage of both the local hand-engineered features and
the deep model in an efficient way. Additionally, we use active
learning to train the activity classifier using a reduced amount of
manually labeled instances. Retraining the models with a huge
amount of accumulated examples is computationally expensive
and not suitable for continuous learning. Hence, we propose
a method to select the best subset of these examples to update
the models incrementally. We conduct rigorous experiments on
four challenging human activity datasets to demonstrate the
effectiveness of our framework.

Index Terms—Active learning, activity recognition, autoencoder,
hybrid feature model, incremental learning.

I. INTRODUCTION

R ECOGNIZING human activities in videos is a widely
studied problem in computer vision due to its numerous

practical applications in security, surveillance, human computer
interaction, etc. It is still a challenging problem because of large
variations in activity and object appearances, scarcity of anno-
tated data, ambiguous action definition, and concept drift in dy-
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namic environments. In the activity recognition problem dealing
with surveillance or streaming videos, it may be necessary to
learn the activity models incrementally because all the training
instances might not be labeled and available in advance. In addi-
tion, new activity instances may arrive continuously and contain
valuable information for improving the activity models. Current
human activity recognition approaches [1] do not perform well
in these scenarios because they are based on a setting which as-
sumes that all the training instances are labeled and available
beforehand. Thus, there is a need to develop methods for on-
line activity recognition that can work with streaming videos
by taking the advantage of newly arriving instances.
Furthermore, most of the recent approaches use hand engi-

neered and static feature models. Suchmanually chosen features
and static models may not be the best for all application domains
and require to be designed separately for each application. Be-
sides, these models are unable to cope with the changes in dy-
namic environments due to the static nature of the featuremodel.
Thus, one of the goals of this work is to automatically learn the
feature models for activity recognition from the unlabeled data
in an online and unsupervised manner. Since the emergence of
deep learning [2], it has received huge attention because of its
well founded theory and excellent generalized performance in
many applications of computer vision. Deep learning based on
techniques such as convolutions, autoencoders, stacking, etc.
have been used for both supervised and unsupervised learning of
meaningful hierarchical features [3], which in most of the cases
outperform hand-engineered local features such as SIFT [4],
HOG [5], etc. In the context of the above discussion, we pose an
important question in this paper: Can any of the deep learning
based methods be leveraged upon for continuous learning of ac-
tivity models from streaming videos?
The ability of a deep autoencoder to learn hierarchical sparse

features from unlabeled data makes it an attractive tool for con-
tinuous learning of the activity models. This is because a sparse
autoencoder can incrementally update [6] and fine tune [2] its
parameters upon the availability of new instances and these in-
stances are not required to be labeled. In the long run, con-
cept drift may occur in streaming videos, which means that the
definition of a particular activity class may change over time.
Current activity recognition approaches often have problems
dealing with these situations because the models are learned
a priori. We can overcome this problem by incorporating the
above properties of deep learning, whereby it is possible to up-
date the sparse autoencoder parameters to reflect changes to
the dynamic environments. Some deep learning based methods,
for example, deep convolutional neural networks [7] proved to
be efficient in modeling human activities from videos. How-
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Fig. 1. This figure illustrates our proposed continuous activity modeling framework. The initial learning phase consists of learning the primary models for sparse
autoencoder and activity recognition with few labeled activities, which is followed by the incremental learning phase.

ever, the enormous size of these networks, requirement of nu-
merous labeled data, and huge training time make them difficult
to use in online continuous learning of the activity models from
streaming videos. Another popular technique of unsupervised
learning is Restricted Boltzmann Machine (RBM) [8]. While an
autoencoder deterministically learns a discriminative model of
the data, RBM learns a generative model in a stochastic manner.
However, autoencoder is comparatively advantageous in online
learning because it is intuitively simpler, can be trained with gra-
dient descent based algorithms, performing inference is straight-
forward, and it is easy to find suitable hyper-parameters such as
number of neurons and layers.
As new instances arrive, it would be unrealistic and costly to

have a human to manually label all the instances. In addition
to deep learning, active learning can also be leveraged upon to
learn activity models continuously from unlabeled streaming
instances and to reduce the manual labeling cost. In active
learning [9], the learner asks queries about unlabeled instances
to a teacher, who labels only instances that are assumed to be
the most informative for training and require least possible
cost. The purpose of the learner is to achieve a certain level of
accuracy with least amount of manual labeling.
New activity instances will be arriving over time and a frac-

tion of them will be labeled by the active learner. As a result
accumulated amount of labeled instances will be increasing. A
naive approach would be to store all of these examples and to
use all of them to retrain the feature and activity models from
the beginning. However, in a resource constrained system this
approach is unrealistic due to the lack of storage capacity and
computational power. In this paper, we propose to use a super-
vised k-medoids clustering based method in order to choose the
most informative subset of training instances. It allows us to re-
duce the storage requirement and training time, while retaining
the same level of performance as like the system that use all of
the instances for training.

A. Main Contributions
In this paper, we propose a novel framework for continuous

learning of activity models from streaming videos by intricately
tying together deep hybrid feature model and active learning.
The key contributions of this paper are as follows.
• We design a deep hybrid feature model for human activity
recognition that can be trained in an unsupervised manner
and has the ability to take the advantages of both the local
features and the deep feature models.

• We cost efficiently update the feature and the recognition
models using the unlabeled instances that continuously ar-
rive from the video stream. We employ a combination of
semi-supervised and active learning technique in order to
reduce the manual labeling of the incoming instances.

• In order to retain already learned information without
storing all of the previously seen data, we develop an
algorithm to select the best set of representatives from the
training data to be stored in the buffer. These instances in
the buffer are used for retraining the models.

• We perform extensive experiments on four challenging
datasets and achieve competitive performance in learning
activity models continuously with reduced labeling cost.

Detailed overview of our proposed framework is illustrated
in Fig. 1. At first, we segment the activities in streaming videos
and extract local features. We compute a single feature vector
for each activity using these local features by a technique based
on spatio-temporal pyramid and average pooling, which will
be used as the input of the deep model in order to learn the
most effective features. Our method has two phases: initial and
incremental learning phase. During the initial learning phase,
with a small amount of labeled and unlabeled instances in hand,
we learn a sparse autoencoder. Then, we encode features for
the labeled instances using the sparse autoencoder and train a
prior activity model. Note that the prior model is not assumed
to be comprehensive with regard to covering all activity classes
or in modeling the variations within the class. It is only used as
a starting point for the continuous learning of activity models.
We start incremental learning with the prior models and up-

date them with the availability of new instances. When a newly
segmented activity arrives, we encode features using the prior
sparse autoencoder. We compute the probability score and the
gradient length of this particular instance.With this information,
we employ active learning to decide whether to label this in-
stance manually or not. Highly confident labels from the models
are directly used for incremental update, which we refer to as
the weak teacher. Otherwise, a human labels an instance based
on its informativeness, which we refer to as the strong teacher.
Retraining the models with all of these instances is compu-
tationally expensive and contrary to the continuous learning.
When the buffer is full, we select the best subset of the in-
stances to incrementally update the parameters of those models,
which in turn reflects the effects of the changing dynamic en-
vironments. Each of these steps is described in more details in
Sections III and IV.
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The research works in this paper is a more comprehensive
version of a previously published paper [10] by us. However,
there are a number of fundamental contributions and new ex-
periments in this paper, which provide a more complete descrip-
tion and framework for continuous activity modeling with ac-
tive learning and deep networks. We show that the method is
not dependent upon the choice of features and perform experi-
ments with STIP, as well as improved trajectories [11], [12]. We
also propose a k-medoids based diverse subset selection method
to select the best representatives training examples. We have
conducted experiments by increasing the number of layers of
the deep model that has shown performance improvement for
some datasets. New experimentation with additional datasets,
features, and the modifications to the algorithms are provided.
We compare the results of the method here to those in [10].

II. RELATED WORKS

Activity recognition approaches can be classified into three
categories based on the type of features used such as low-level,
mid-level, and high-level feature based methods. Low-level fea-
ture based methods [11], [13] have two processing steps - an
interest point or patch detection step followed by a local fea-
ture description step. These local features are subjected to a
post-processing step before applying them to any classification
methods. Mid-level feature based methods rely on the ability
to find and process human and its trajectory in the video prior
to activity recognition. They exploit human tracks [14], tem-
poral sequence of human pose [15], trajectories [12], etc. In
high-level feature based methods, activities are represented as
a collection of semantic attributes such as action bank [16], ac-
toms [17], semantic model vectors [18], etc. In addition to the
above features, some graphical model based global optimiza-
tion techniques are used to improve the performance such as
conditional [19] and Markov random field [20], petri net [21],
etc. Some recent works [22], [23] used the contextual informa-
tion surrounding the activity of interest combining with local
and global features for complex activity recognition. We would
like to refer the readers to a survey paper [1] for more detailed
review on activity recognition.
Continuous learning from streaming data is a well defined

problem in machine learning and a number of different methods
can be found. Among these methods, ensemble of classifiers
[24], [25] based methods are mostly common, where new weak
classifiers are trained as new data is available and added to the
ensemble. Outputs of these weak classifiers are combined in a
weighted manner to obtain the final decision. However, these
approaches are unrealistic in many scenarios since the number
of weak classifiers increases with time.
Incremental activity modeling has been addressed by few pa-

pers in the literature. In [26], an incremental action recogni-
tion method was proposed based on a feature tree, which grows
in size when additional training instances become available. In
[14], an incremental activity learning framework was proposed
based on human tracks. However, these methods are infeasible
for continuous learning from streaming videos because [26] re-
quires the storage of all the seen training instances in the form
of a feature tree, while [14] requires the annotation of human
body in the initial frame of an action clip. The method proposed

in [27] is based on active learning and boosted SVM classifiers.
They always train a set of newweak classifiers for newly arrived
instances with hand-engineered features, which is inefficient for
continuous learning in dynamic environments.
Active learning has been successfully used in speech recog-

nition, information retrieval, and document classification [9].
Some recent works used active learning in several computer
vision related applications such as streaming data [28], image
segmentation [29], image and object classification [30], video
recognition [31], and multimedia information retrieval [32].
Even though they continuously update the classifiers, they
require the storage of all training instances.
Deep learning has been successfully used in several domains

of multimedia and computer vision such as image denoising
[33], scene understanding [34], object detection and recogni-
tion [35], multimodal learning [36], etc. Deep learning based
human activity recognition approaches have shown promising
performance [3], [37]–[39]. In [3], independent subspace
analysis was combined with deep learning techniques such as
stacking and convolution. In [37]–[39] and [7] convolutional
neural network was used to automatically learn spatio-temporal
features from video for activity modeling. However, none of
these methods have the ability to continuously learn activity
models from streaming videos and they require a large amount
of labeled instances.
Best instance selection. An early survey paper [40] enumer-

ated several methods for relevant features and examples selec-
tion. The results in [41] showed that all examples are not equally
important for training, excluding some of them would help the
model to achieve better performance. In [42], a voting based
method was proposed to prune noisy and troublesome exam-
ples. The methods in [43] proposed a sparse coding based tech-
nique for selecting the best subset of the examples.

III. ACTIVITY MODELING IN DEEP NETWORKS

A. Initial Activity Representation
We segment activities from the streaming videos as follows.

At first, we detect motion regions using an adaptive background
subtraction algorithm [44]. We detect moving persons around
these motion regions using [45] and use these detected per-
sons to initialize the tracking method developed in [46], which
gives us local trajectories of the moving persons. We collect
STIP features [13] only for these motion regions. Then, we
segment these motion regions into activity segments using the
method described in [47] with STIP histograms as the model
observation.
As in [2], raw pixels would be an effective initial feature rep-

resentation for learning unsupervised hierarchical features if the
number of pixels is small. However, a typical activity segment
has overwhelming number of pixels, which makes it unrealistic
to use directly for training a neural network. For example, in
KTH [48] a representative activity segment consists of 375 - 500
frames with a resolution of pixels. Hence, the total
number of pixels is around to . These numbers
are even higher for more challenging datasets. Some works used
2D [35] or 3D [39] convolutional network to find a compact rep-
resentation, which are computationally expensive and difficult
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Fig. 2. Spatio-temporal pyramid and local feature-based representation of an
activity segment. Such representation can take the advantages of deep learning
even with limited computational resources. Here, and . Red dots
are local features.

to use in continuous learning from streaming videos due to huge
number of parameters that need to be learned. Requirement of
an efficient but less expensive recognition framework is high in
a resource constrained system such as surveillance camera net-
work where most of the processing need to be done in a local
node.
In order to find a compact and efficient representation of the

activity segments, we use spatio-temporal pyramid and average
pooling based technique on the extracted local features similar
to [49] (see Fig. 2). Any local features such as dense trajectory
[11] or STIP [13] can be used as shown in the experiment sec-
tion. Let, be the set of extracted local fea-
tures, and be the number of temporal and spatial levels
respectively, and be the set of local features belonging to
cube at and . Hence, average pooling gives us
the fixed length feature . We get the initial
feature representation by concatenating these pooled features
from lower level to higher level as,

.
We preprocess the above initial features before proceeding

to the next levels in order to make them less correlated and to
have similar variance. It allows the gradient descent based op-
timization algorithms to converge faster, and in turn reduce the
training time of the models. We use the method known as ZCA
whitening described in [50]. Let be the set
of feature vectors and be the feature co-variance. can be
written as . Hence, ZCA whitening
uses the transform to compute the whitened
feature vector .

B. Sparse Autoencoder
We use a multi layer sparse autoencoder ( ) [2] in order to

learn features automatically from unsupervised data. It is essen-
tially a neural network with one input, one output, and a number
of hidden layers in the middle. Unlike the conventional neural
networks, it can be trained in a greedy layer-wise fashion. Each
layer is trained separately and then stacked together. This allows
us to avoid the gradient diffusion problem faced by multilayer
neural networks.1
Fig. 3 shows the simple network required for training a single

layer of the sparse autoencoder. The size of a input vector to
this layer is and the number of neurons in this layer is . In re-
sponse to a feature vector , the activation of the hidden

1|UFLDL Tutorial,” [Online]. Available: http://deeplearning.stanford.edu/
wiki/index.php/UFLDL_Tutorial

Fig. 3. Single-layer sparse autoencoder with one hidden layer.

layer and the output of the network are
and respectively, where ,

is the sigmoid function,
and are weight matrices, and are
bias vectors, and . Given a set of training input vec-
tors, , the goal is to find the optimal values of

so that the reconstruction error is mini-
mized, which turns into the following optimization problem:

(1)

where is the reconstruction error and
is the regularization term. In order to obtain sparse feature rep-
resentation, we would like to constrain the neurons in the hidden
layer to be inactive most of the time. It can be achieved by
adding a sparsity penalty term

(2)

where is the average activation of hidden
unit , is a sparsity parameter, which specifies the desired level
of sparsity, and is the weight of the sparsity penalty term [51].
If the number of hidden units is less than the number of input
units , then the network is forced to learn a compressed and
sparse representation of the input.
This is essentially a convex optimization problem with

respect to the parameters . The first two term of (1) are
convex since L2 norm is convex. The third term is also convex
since is monotonically increasing function with respect to
. This type of network defined by a convex function can be

trained using gradient descent based backpropagation algo-
rithm. Given, a random initialization of the parameters, gradient
descent always takes steps in the direction of global minimum
until convergence. The direction of this step is defined by the
negative of the derivative of the cost function. The derivative
of the cost function depicted in (1) for an input vector with
respect to and is given by (3) and (4) respectively. The
change of the parameters and is defined by (5) and (6)
respectively. After training, encoded features ( ) are obtained
by taking the output from the last hidden layer. Algorithm 1
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illustrates the overall procedure of training the multi layer
sparse autoencoder.

(3)

(4)

(5)

(6)

Algorithm 1 Training Multi Layer Sparse Autoencoder

Input: Training instances,
Output: Optimal weights,
for each layer do

Initialize the weights of layer ,
repeat

Perform feedforward pass:
Compute:
Perform backpropagation:
Compute gradients (Eqns. (3)-(4)),
Compute the changes of params. (Eqns. (5)-(6)),
Update weights,

. learning rate.
until Convergence or maximum iteration
Compute feature of next layer,

end for
Feature Encoding:
for : Max layer do

Compute:
end for

C. Activity Model
We use a multinomial logistic regression or softmax classifier

as the activity classification model , because it can be jointly
trained with the sparse autoencoder during fine tuning of the pa-
rameters with labeled instances. The probability that an instance

belongs to class is defined as

(7)

where is the set of class labels, is the
weight vector corresponding to class , and the superscript
denotes transpose operation. The prediction of class is defined
as, . Given a set of labeled
training instances , the weight
matrix is obtained by solving the convex optimization
problem as shown in (8).

(8)

Fig. 4. Fine tuning is performed by stacking softmax at the end of all the layers
of the sparse autoencoder.

D. Fine Tuning the Sparse Autoencoder

Fine tuning is a common strategy in deep learning. The goal
is to fine tune the parameters of the sparse autoencoder upon the
availability of labeled instances, which improves performance
significantly. Even though, above two networks- sparse autoen-
coder (Section III-B) and softmax classifier (Section III-C) - are
trained independently, during fine tuning they are considered as
a single network as shown in Fig. 4. The weights are updated
using backpropagation algorithm similar to Algorithm 1. The
only exception is that weights are initialized with the previously
trained weights.

IV. CONTINUOUS LEARNING OF ACTIVITY MODELS

A. Active Learning

As discussed in Section I, active learning can be used to
reduce the amount of manual labeling during learning from
streaming data. Based on the type of teacher available, the
active learning systems are classified into two categories:
strong and weak teacher. Strong teachers are mainly humans,
who generally provides correct and unambiguous class labels
but they have a significant cost. On the other hand, weak
teachers generally provide more tentative labels. They are
basically classification algorithms, which make errors but
perform above the accuracy of random guessing. Our proposed
framework provides the opportunity to take advantages of
both kind of teachers. Given a pool of unlabeled instances

, an activity model , and the corresponding
cost function , we select a teacher as follows.
Teacher Selection: When the pool of unlabeled activi-

ties are presented to the system, current activity model
is applied on them, which generates a set of tenta-

tive decisions with probabilities
. Now, we invoke the weak

teacher when the tentative decision has higher probability.
That means, if is greater than a threshold , the
unlabeled activity is labeled using the label from the current
activity model. Now, for the rest of the unlabeled activities in
the pool, we compute expected gradient length [52] for each
activity. We select those with the highest expected gradient
length to be labeled by a strong teacher.
Expected Gradient Length: The main idea here is that we se-

lect an unlabeled instance as a training sample if it brings the
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greatest change in the current model. Since we train our classi-
fication model with gradient descent, we add the unlabeled in-
stance to the training set if it creates the greatest change in the
gradient of the objective function

(9)

However, gradient change computation requires the knowledge
of the label, which we don’t have. So, we compute expected gra-
dient length of as shown in (10). Given the pool of unlabeled
activities , we add a fraction ( ) of to the set of training
activities as shown in (11).

(10)

(11)

Above mentioned optimization problem will select a set that
will contain the most informative queries. It is a subset selection
problem, where we have to inspect each valid combinations.
The number of combinations is exponential, which becomes a
NP-hard problem.We provide a greedy solution to this problem.
In each selection step, we compute the expected change of gra-
dient for each instance in and select the best instances,
which can be performed in linear time.

B. Incremental Learning
We train sparse autoencoder and softmax classifier using

gradient descent method. Gradient descent has two modes
of training - batch and online modes. In batch mode, weight
changes are computed over all the accumulated instances and
then the update step is performed. In online mode, weight
changes are computed for each instance one at a time followed
by the update step [6]. The online mode is more appropriate for
incremental learning of the weights as new training instances
arrive over time. However, the approach we use for incre-
mental learning is known as mini-batch training,2 where weight
changes are accumulated over some number, , of instances
before updating the weights. Here, and is
the total number of training instances. Mini-batch incremental
training is shown in Algorithm 2.

Algorithm 2 Mini-batch training algorithm.

Initialize the weights, .
Repeat the following steps:
if training instances available then

Process training instances.
Compute the change of gradients, [(3)–(6)].
Update the weights,

else
Wait for stream data to arrive

end if

However, performance of the above mentioned method de-
teriorates if the newly arrived training instances contain noise.

2[Online]. Available: ftp://ftp.sas.com/pub/neural/FAQ2.html

To deal with this situation, we propose two more incremental
learning scenarios based on the availability of memory - Infinite
Buffer and Fixed Buffer. In the infinite buffer approach, training
instances that arrived so far are stored in the memory and all of
them are used to incrementally train the network. On the other
hand, in the fixed buffer approach, memory is limited to store all
of training instances. So, we select a number of diverse training
instances from the set to be stored in the memory as described
in the following subsection.

C. Diverse Subset Selection (DSS)
In a resource constrained system where computational power

and storage capacity is limited, it is not practical to store all of
the training instances and to retrain the models with all of them.
We select a subset of these instances to be stored and use only
them for training. In order to achieve comparable performance,
we have to select themost diverse and informative instances.We
employ a variant of k-medoids algorithm [53] named as super-
vised k-medoids to select the most diverse subset of instances.
K-medoids has a number of advantages over k-means that we
used in [10]. K-medoids can be used with any distance measures
unlike k-means, where Euclidean distance is generally used that
is consistent with mean computation. Statistically k-means is
more susceptible to outliers and noise than k-medoids. It makes
k-medoids a favorable choice for online activity recognition
scenario.
Suppose, we have a set of instances

, where is the feature and is the class
label.Wewant to select the best instances for each class label.
The objective function can be expressed as

(12)

where is the indicator function. and are the labels
of and respectively. is the cluster center and
is a data point nearest to it. is the representative for all the
data points . The objective function can be solved by the
algorithm shown in Algorithm 3.

Algorithm 3 Diverse Subset Selection

is the number of training instances of class .
is the number of representatives of class .

for each class .do
if then

Randomly select data points of class .
repeat

for do
Compute , all the points nearest to .
Compute medoid of the points .

end for
until no changes of .

else
Select all of the instances.

end if
end for
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Fig. 5. Experimental evaluation of the DSS algorithm with infinite buffer,
CLDN [10], and random sampling.

Fig. 6. Illustrative comparison between random selection and our proposed
DSS algorithm. We show four selected examples by random selection and DSS
algorithm for UCF50 [55] (top two rows) and TRECVID [56] (bottom two
rows) datasets. Random selection selects similar instances of Baseball and Cell-
ToEar activities, whereas instances selected by the DSS are very distinctive and
diverse.

Experimental evaluation verifies the robustness of the pro-
posed DSS algorithm as shown in Fig. 5. We compare the re-
sults produced by the DSS against infinite buffer, random se-
lection, and k-means clustering [10]. During these experiments
active learning system is not invoked as we assume that all the
instances are labeled.We divide the training set into four batches
and feed these batches sequentially to the learning framework.
In these experiments, the infinite buffer means . DSS,
k-means, and Random assume a buffer size . Random
uses an uniform distribution. The plots in Fig. 5 shows results
for KTH [54] and VIRAT [55] datasets. DSS achieves perfor-
mance similar to the infinite buffer and better than k-means,
whereas random selection performs poorly relative to DSS and
k-means. Fig. 6 provides a qualitative comparison between DSS
and random selection.
The overall algorithm for continuous learning of activity

models with deep nets is presented in Algorithm 4.

Algorithm 4 Continuous Learning of Activity Models

Input: : Continuous Streaming Video.
Output: Activity Recognition Model ,
Sparse Autoencoder Model , Labeled Activities

.

Parameters: Feature design parameters: , , and ,
Training parameters: , , and , and Experiment design
parameters: , and .
Step 0: Learn the prior sparse autoencoder and the
prior activity model using fewer training data available.
(Algorithm 1)
Step 1: Segment the video at timestamp to get an
unlabeled activity segment, (Section III-A). Accumulate
the activities in a batch. Go to step 2 when the batch is ready.
Step 2:
Buffer:
for each element in the batch do

Apply the current model on and
Get a label as follows,
if then

Select the instance for incremental update:

else
Compute the ECG of , . [(10)]
Store in the unlabeled pool:

end if
end for
Step 3:
Select the most informative instances . from . [(11)]
Store the instances in the buffer: .
Step 4:
if Resource Constraind System then

Select the best subset of instances from [(12)].
end if
Step 5: Update the model parameters and using the
instances in . (Algorithm 2).
Step 6: goto step 1 for the next batch of training instances.

V. EXPERIMENTS

We conduct rigorous experiments on four challenging human
activity datasets to verify the effectiveness of our framework.
The first two datasets are KTH [54] and UCF50 [55]. These
datasets does not contain long video sequences with multiple
activities. Each activity instance is a separate video segment.
We assume that the temporal segmentation of the activities are
already given and we sequentially send the segments as the
unlabeled instances to our continuous activity learning frame-
work. Other two datasets are VIRAT [57] and TRECVID [56].
These datasets are comprised of long video sequences with mul-
tiple activities, where we have to segment the activities from
these long video sequences. We use the method described in
Section III-A for activity segmentation. Below we briefly de-
scribe these datasets along with different parameter values.
KTH Dataset: KTH [54] dataset has six action classes such

as boxing, handclapping, handwaving, jogging, running, and
walking. These actions are performed by 25 subjects in four
different scenarios such as outdoors, scale variation, different
clothes, and indoors with lighting variation. There are 599 video
clips with pixels resolution. The parameter values we
used for this dataset are as follows. For KTH, during initial ac-
tivity representation, we set and . The size of
the feature vector to the input layer of the sparse autoencoder
is , where for
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STIP feature descriptor, for HOG/HOF based trajec-
tory feature descriptor, and for MBH based trajectory
feature descriptor [12]. Number of neurons in the first and the
second hidden layers are 800 and 400 respectively. We set the
regularization parameter in (8). We set and

and the sparsity parameter and 0.5 in (1) during
the training of first and second layers respectively. is always
set to 3.
UCF50 Dataset: We perform second experiment on more

challenging UCF50 dataset [55]. It has fifty action classes such
as basketball, biking, diving, golf swing, horse riding, soccer
juggling, golf swing, tennis swing, walking, etc. These actions
are performed by 25 subjects under different scenarios and
illumination conditions. There are about 6676 video clips with

pixels resolution. For this dataset, we set
and . The number of neurons in the first and the second
hidden layers are 1600 and 800 respectively. We set
and in (1) during the training of first and second
layers respectively. Rest of the parameters are same as the KTH
dataset.
VIRAT Dataset: VIRAT [57] is a state-of-the-art human

activity dataset with many challenging characteristics. It has
eleven action classes - person loading an object (PLV), person
unloading an object (PUV), person opening a vehicle trunk
(POV), person closing a vehicle trunk (PCV), person getting
into a vehicle (PGiV), person getting out of a vehicle (PGoV),
person gesturing (PG), person carrying an object (PO), person
running (PR), person entering a facility (PEF), and person
exiting a facility (PXF). Videos are 2 to 15 minutes long and

pixels resolution. All the parameter values for this
dataset are same as the UCF50.
TRECVID Dataset: The TRECVID dataset [56] consists of

over 100 hrs of videos captured at the London Gatwick Airport
using 5 cameras with a resolution of pixels. There
are seven types of human actions in this dataset. In this work,
we perform experiments on four individual action classes - Cell-
ToEar, ObjectPut, Pointing, and PersonRuns and one group ac-
tion class - Embrace. All the parameter values for this dataset
are same as the UCF50 dataset.

A. Experiment Objectives and Setup

One of the main objectives of the experiments is to analyze
the performances of our proposed framework in learning ac-
tivity models continuously from streaming videos. In ideal case,
wewould like to see that the performance is increasing smoothly
as new instances are presented to the system and ultimately, it
converges to the performances of one time exhaustive learning
approaches which assumes that all the examples are labeled and
presented beforehand. We maintain following protocols during
most of the experiments.
• Depending upon the sequence in which the data is pre-
sented to the learning module, each run of the framework
on same dataset shows variances in accuracies. So, we run
the same experiments with same parameters multiple times
and report the mean of the results in this paper.

• We perform five fold cross validation. Four folds are used
as the training set, one fold as the testing set. We report the
mean accuracies across the folds.

Now we describe different experiment scenarios, their objec-
tives, and the analysis of the results.

B. Four Variants of the Framework

Based on the use of active learning and the size of buffer to
store training instances, we conduct our experiments with the
following four different scenarios.
1) Active learning and fixed buffer (A1F1): This is the most

realistic case, where we use active learning to reduce the
amount of manual labeling of the incoming instances. We
also assume that we have limited memory to store labeled
training instances. So we have to select the most diverse
instances as discussed in Algorithm 3. We only use the
training instances stored in this fixed buffer to incremen-
tally update the parameters of sparse autoencoder and
activity model . During this experiment, we set
in (11) and in (12) and Algorithm 3.

2) Active learning and infinite buffer (A1F0): Here we use
active learning to reduce the amount of manual labeling
but we assume that we have infinite memory. We store
all the labeled training instances and use all of them to
incrementally update the parameters of sparse autoencoder

and activity model .
3) No active learning and fixed buffer (A0F1): Here we do not

use active learning and we assume that all the incoming in-
stances are manually labeled.We have limited memory and
we select the most diverse instances to store. We only use
the training instances stored in this fixed buffer to incre-
mentally update the parameters of sparse autoencoder
and activity model .

4) No active learning and infinite buffer (A0F0): This is the
least realistic case, where we assume that all the incoming
instances are manually labeled and we have infinite
memory to store all of them. We use all the instances
arrived so far to incrementally update the parameters of
sparse autoencoder and activity model . When
the entire video is seen the performance of this method
should approach that of the batch methods in the existing
literature, and can be used to compare our results with the
state-of-the-art.

Analysis of the results: Plots in Fig. 7(a), (c), (e), and
(g) show the performances of above mentioned experiment
scenarios averaged over all activity classes on KTH, VIRAT,
UCF50, and TRECVID datasets respectively. Experiments on
KTH and VIRAT are performed using trajectory [12] based
local features, whereas for UCF50 and TRECVID we use
STIP [13] based local features. The x-axis shows the amount
of training instances presented so far and the y-axis shows
the accuracy. We divide the number of correct classifications
by the total number of instances presented to the classifier to
compute these accuracies. The plots of A1F1, A1F0, A0F1, and
A0F0 show general trend of performance improvement as time
moves forward. The final accuracies obtained after batch four
differ from each other due to the different constraints enforced
to these test scenarios. Due to the random weight initialization
at the beginning of the training of sparse autoencoder, each run
of the framework may produce slightly different results. This
random phenomenon is quantized by the error bar in the plot.
We compute this error bar by running the framework multiple
times and taking the variance of the accuracies.
For KTH dataset [Fig. 7(a)], A0F0 performs better than other

three test cases as expected because it stores and uses all of
the labeled training instances. The most constrained case A1F1
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Fig. 7. (a), (c), (e), and (g) Performances of the four variants of the framework on KTH, VIRAT, UCF50, and TRECVID datasets, respectively. (b), (d), (f), and
(h) Effect of hierarchical feature learning for KTH, VIRAT, UCF50, and TRECVID datasets, respectively. These plots are best viewable in color. Please read the
text in Sections V-B and V-C for detailed analysis.

also performs well by keeping itself very close to A0F0. Per-
formance trends of A0F1 and A1F0 are also similar to A0F0
and A1F1. This proves the efficiency of the chosen methods
to be able perform in resource constrained system. For UCF50
dataset [Fig. 7(e)], trend of the plots are similar to KTH dataset.
However, the gap between A0F0 and A1F1 increases because
UCF50 is more complex than the KTH dataset. Intra-class vari-
ance in UCF50 is much larger than the KTH. As a result, DSS
and active learning mechanism may exclude some of the in-
formative instances due to storage constraint. Characteristics of
these plots for VIRAT [Fig. 7(c)] and TRECVID [Fig. 7(g)] are
also similar to above two datasets. We use sparse autoencoder
with two hidden layers for generating these results for A1F1,
A1F0, A0F1, and A0F0 test scenarios for all of these datasets
and the active learning system labels fifty percent of the training
data using both of the teachers. Our deep hybrid feature model
with improved trajectory based HOG+HOF features achieves
around 1.2% and 8% improvement on KTH and VIRAT dataset
respectively over STIP based deep hybrid feature model. Ex-
periments with MBH features [12] also achieved similar per-
formances. Improved trajectories are more efficient in motion
encoding for activity recognition and also more effective to be
used as the input to such hybrid feature models.

C. Effect of Hierarchical Feature Learning
Sparse autoencoder may have more than one layer as ex-

plained in Section III-B. Each layer represents a meaningful
feature hierarchy that allows more generalization. In this ex-
periment, we show how the number of layers in the sparse au-
toencoder affect the performances on the test data. We have
three different network types based on the number of layers
- zero layer softmax classifier (SM), one layer sparse autoen-
coder (SAE-H1), and two layers sparse autoencoder (SAE-H2).
Fig. 7(b) and (f) show the performances averaged over all ac-
tivity classes on KTH and UCF50 datasets respectively. All of
the plots show a general trend of asymptotic performance im-
provement. The final accuracy of SAE-H2 is higher than its two

counterparts. The plot for SAE-H2 starts slowly but it quickly
catches up other two plots as it sees more data. It shows the ben-
efit of hierarchical feature representation even though the im-
provement is not by a hugemargin. Higher number of neurons in
the hidden layers improves the performances with the expense
of increasing training time. Fig. 7(d) and (h) show the plots for
VIRAT and TRECVID datasets. Performance improves signif-
icantly due to the use of hierarchical feature representation for
the TRECVID dataset. However for VIRAT, this improvement
is insignificant.

D. Activity-Wise Performance

In this experiment, we show the performances of our frame-
work separately on each activity class. Fig. 8(a) and (d) show
activity-wise performances on KTH and UCF50 respectively.
Each group of stacked bars shows performances of an activity
class. Each group contains four bars corresponding to A1F1,
A1F0, A0F1, and A0F0 respectively from left to right. Each bar
has four or less stacks. Each stack represents the performance
improvement when a new batch of instances presented to the
framework. A missing stack means no performance improve-
ment occurs during that step. The plots show that as new in-
stances are arriving, our framework improves performance of
each of the activity model. The class accuracy distribution for
KTH is balanced, whereas for UCF50 some activities perform
better. Fig. 8(b) and (c) show activity-wise performances on
VIRAT and TRECVID respectively.

E. Evaluation of Continuous Learning on Individual Activities

Fig. 9 shows some interesting examples of KTH and UCF
50 datasets respectively. At the beginning an activity may be
misclassified or it may be correctly classified with a low proba-
bility score by the activity recognition models. However, in our
framework, the models continue to improve with time and later
it can correctly classify the same misclassified activities with a
higher probability score.
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Fig. 8. (a)–(d) Activity-wise performance analysis for KTH, VIRAT, TRECVID, and UCF50 datasets, respectively. These plots are best viewable in color. Please
read the text in Section V-D for detailed analysis. (a) KTH. (b) VIRAT. (c) TRECVID. (d) UCF50.

Fig. 9. Evaluation of continuous learning on some individual activities of KTH and UCF50 datasets. Activity name in green means the ground truth class, whereas
red means false predictions. Grey bars represent probability scores. (a) An instance of Boxing activity. It is misclassified by the model trained with batch 1 data.
But the model trained with batch 2 data correctly classifies it. (b) At first the activity Clapping is classified correctly with a low probability score but later, as the
models are improving, this score increases. (c) The Waiving activity is classified correctly with probability close to 1 by the model from the beginning. (d) This
is an interesting example. The activity Running is correctly classified by the batch 1 model, misclassified by the batch 2 and the batch 3 models, and finally
correctly classified by the batch 4 model. (e) The Mixing activity is misclassified by the batch 1 model, correctly classified with low probability by the batch 2
model, and finally correctly classified with high probability by the batch 3 and the batch 4 models. (f) In some rare cases, such as for this Jumping Rope activity,
correct classification probability score may be decreased by the later models. Plots are best viewable in color. (a) Boxing. (b) Clapping. (c) Waiving. (d) Running.
(e) Mixing. (f) Jump Rope.

F. Comparison With Other Active Learning Techniques
As discussed in Section IV-A, our active learning system is

comprised of weak and strong teachers. Some instances are clas-
sified by the current model with high confidence. We use these
instances during incremental training along with the labels pro-
vided by the classifier, which we refer to as the weak teacher.
For the rest of the instances we use expected change of gradient
measure to select the most informative instances to be labeled
by a human, which we refer to as the strong teacher. We com-
pare our active learning system with fixed buffer (A1F1) against
one baseline that assumes all the instances are labeled (A0F1)
and three other state-of-the-art approaches such as incremental
activity modeling (IAM) [27], Entropy [58], and random selec-
tion. The performance deviation of our method (A1F1) as illus-

Fig. 10. Performance comparisons with other active learning techniques on
KTH and VIRAT datasets.

trated in Fig. 10 is very insignificant comparing to the baseline,
whereas it performs better than IAM, Entropy, and random se-
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Fig. 11. (Top) (a)–(d) Sorted expected change of gradients (ECG) of 120 instances of KTH dataset, 1277 instances of UCF50 dataset, 165 instances of VIRAT
dataest, and 639 instances of TRECVID dataset. (Bottom) Some of the informative and non-informative instances. (e) For KTH, some boxing actions (in a green
border) are more informative than some other boxing actions (in a red border). (f) For UCF50, some diving actions (in a green border) are more informative than
some other diving actions (in a red border). (g) For VIRAT dataset, some person exits from facility actions (in a green border) are more informative than some of
these actions (in a red border). (h) For TRECVID dataset, some CellToEar actions (in a green border) are more informative than some of these actions (in a red
border). Colored stars in the top plots correspond to the example activities in the bottom in a left to right order. Plots are best viewable in color. (e) Snapshots of
KTH. (f) Snapshots of UCF50. (g) Snapshots of VIRAT. (h) Snapshots of TRECVID.

lection. A1F1 outperformsA0F1 in KTH dataset, whereas A0F1
performs little better than A1F1 in VIRAT dataset. We use tra-
jectory based feature in this experiment for VIRAT dataset.

G. Active Selection of Informative Instances

As described in Section IV-A, all of the instances are not
equally important for updating the activity recognition and the
feature models. A few of them posses valuable information. In
this experiment, we show some of the informative and non-
informative instances based on the expected gradient change
(ECG). Plot (a) and (b) of Fig. 11 show the ECG curve of KTH
and UCF50 datasets. We compute the ECG of 120 and 1277 in-
stances of batch 2 given that we have the trained models with
batch 1. These two plots have the same shape but the area under
the curve is different. This is because KTH is a simple dataset
and the intra-class variance is low, whereas UCF50 is com-
plex dataset with higher intra-class variance. For KTH, around
70% of the instances are almost non-informative with respect
to the current model, whereas for UCF50 this number is around
40%. Fig. 11(e) and (f) show some examples of actively se-
lected instances for KTH and UCF50 datasets marked by green
boundary and some examples of discarded instances marked by
red boundary. ECG of these instances are marked by green and
red star in the ECG plot of the respective datasets. Same expla-
nations apply for VIRAT and TRECVID as shown in Fig. 11(c),
(d), (g), and (h).

H. Strong Teacher and Weak Teacher

Table I shows the benefit of using a weak teacher. Weak
teacher helps to reduce the amount of manual labeling. We set

during the experiments to achieve these results.

TABLE I
BENEFIT OF THE WEAK TEACHER

TABLE II
COMPARISON OF OUR RESULTS AGAINST STATE-OF-THE-ART

BATCH AND INCREMENTAL METHODS

I. Comparison With State-of-the-Art Approaches
Table II shows the performance comparisons of our methods

against the state-of-the-art batch and incremental methods.
When all the instances are seen, our methods A0F0 and

A1F1 on KTH dataset have achieved 98.0% and 96.1% accu-
racies respectively with improved trajectory feature. When we
use STIP based local features these accuracies are 96.8% and
94.1% respectively. These results are very competitive with
other works such as spatio-temporal feature based methods:
92.1% (HOF) [59] and 91.8% (HOG/HOF) [59]; active learning
based method: 96.3% [60]; deep learning based methods:
93.9% (ICA) [3], 90.2% (3DCNN) [38] and 94.39% (3DCNN)
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Fig. 12. Sensitivity analysis of various parameters of the framework on KTH dataset. Please see the text in Section V-J for detailed analysis. Plots are best viewable
in color. (a) Effect of fine tuning. (b) Effect of hidden layer size, . (c) Effect of sparsity penalty parameter, . (d) Effect of sparsity size parameter, . (e) Effect
of manual labeling parameter, . (f) Final accuracies of A1F1 versus different . (g) Effect of the buffer size ( ) on A1F1. (h) Final accuracies of A1F1 versus
. (i) Performance variations of A1F1 with . (j) Varying number of batches.

[37]; and incremental learning based methods: 96.1% [14] and
90.3% [26].
Our methods A0F0 and A1F1 on UCF50 dataset have

achieved 53.8% and 44.3% accuracies respectively. Research
work in [55] reported an accuracy of 53.06% using motion
feature and 47.56% using scene context feature on UCF50
datast. However, they used 25-fold cross validation, while we
have used 5-fold cross validation.
Our methods A0F0 and A1F1 have achieved 62.6% and

61.8% accuracies respectively on VIRAT dataset using im-
proved trajectory features. In case of STIP based features these
accuracies are 54.20% and 53.66% respectively. These results
are very competitive with other spatio-temporal feature based
method in [61] (52.3% and 55.4%).
For TRECVID dataset, our methods A0F0 and A1F1 have

achieved 66.65% and 64.56% accuracies, which is very compet-
itive with other spatio-temporal feature based methods in [38]
(60.56% and 62.69%). The reported results in [38] are on three
activities of TRECVID dataset, whereas our results are on five
activities as mentioned earlier.
Performance improvement is significant for KTH, VIRAT

and TRECVID datasets comparing to the previous version [10]
of this work. We use UCF50 in this work instead of UCF11 [62].
UCF50 has fifty action class, whereas UCF11 has only eleven
action classes.

J. Parameter Sensitivity
We have three types of parameters, initial feature selection

( , , and ), model training ( , , and ), and experiment

design parameters ( , , and ). Sensitivity analysis of these
parameters on KTH dataset are presented in Fig. 12(b)–(j).
Plot 12(a) shows the benefit of fine tuning the model param-

eters on top of unsupervised feature learning. It shows that per-
formances are improved by a margin of 2-3%. Plot 12(b) shows
the performance of A1F1 for different number of neurons in the
first hidden layer , which is varied from 100 to 1200. It shows
that performance improves with the increasing number of neu-
rons in the hidden layer. However, increasing number of neu-
rons also increases the training time. Plot 12(c) illustrates the
sensitivity of the sparsity weight parameter, [(1)]. is varied
from 1 to 5 with an increment of 1. We get the best result with

. Plot 12(d) draws the sensitivity analysis of the spar-
sity parameter, [(1)]. is varied from 0.1 to 0.5 with 0.1 in-
crement. Results are better for higher values of this parameter.
Plot 12(e) illustrates the sensitivity of the parameter [(11)].
This parameter specifies the fraction of the training instances to
be selected by the active learner based on the expected gradient
change without the presence of the weak teacher. If the active
learner select smaller amount of instances, performance deteri-
orate because it may exclude some informative instances. These
plots corresponds to the A1F1 test case.
Plot 12(f) shows the final accuracies after the batch four for

different values of of the A1F1 test case. It is interesting
that with around 50% manual labeling our framework can
achieve performance close to 100% manual labeling. The curve
becomes flat after 50% line. Plot 12(g) illustrates the impact of
the buffer size [(12)]. We vary the buffer size from 20 to 60.
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It shows that accuracies improve with higher buffer size as ex-
pected. Plot 12(h) shows the final accuracies after utilizing the
batch four data by the framework for different values of . It
also gives an idea what is the best size to set for the fixed buffers
that would achieve similar performance of infinite buffer. For
example, KTH dataset has 100 instances per class. Among
them we use 80 instances for training in this experiment. A
careful observation of the plot would reveal that a buffer size
of 40 per class would achieve similar performance comparing
to a buffer size of 80. However, performance decreases when
the buffer size is less than 40. Plot 12(i) illustrates the effect of
the different values of weak teacher parameter . If we set to
a higher value, the active learning system will pick instances
that has been classified by the current classifier with very high
confidence. Even though it increases the amount of manual
labeling, the overall performance is higher. However, if we set
to a lower value, the active learning system ends up picking

instances that are misclassified by the current classifier. As a
result performances diverge over time due to incrementally
training the models with wrong labels. Plot 12(j) shows the
performance of the framework for different number of batches.
For batch experiment, where in this plot, we
divide all of the available training instances into batches.
Then, we send each batch sequentially to the framework. More
precisely, two accuracies are plotted for batch 2, where first one
is for 50% of data and second one is for 100% of data. While
overall asymptotic performances remain same, with increasing
number of batch size final performance reduces by a smaller
margin. This is due to the fact that smaller batch sizes give
A1F1 lesser options to pick the most informative instances.

K. Summary of Experiment Analysis
• Deep networks can be combined with continuous learning
methods for activity recognition in streaming videos
[Fig. 7(b), (e), (h), (j)].

• Most realistic method A1F1 which is comprised of deep
learning, active learning, and fixed buffer can achieve per-
formance close to A0F0 which approximates the batch
methods in the existing literature [Fig. 7(a), (d), (g), (i)].

• When all the instances are seen, final accuracies of our
method A1F1 that is suitable for resource constrained
system are very competitive with state-of-the-art batch
methods. It achieves such performance with a reduced
amount of manually labeled instances.

VI. CONCLUSION
In this work, we proposed a novel framework for learning

human activity models continuously from streaming videos.
Most of the research works on human activity recognition
assumes that all the training instances are labeled and available
beforehand. These works do not take the advantage of new
incoming instances. Our proposed framework improves the
current activity models by taking the advantages of newly
arrived unlabeled instances and intricately trying together deep
networks and active learning. Rigorous experiments on four
challenging datasets proved the robustness of our framework.
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