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1. High Resolution Plots
1.1. VIRAT

Number of Batches

1 2 3 4 5 6

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8
Dataset: VIRAT

SSVM

SPN

IAM

No Context

A-A Context

A-A-C Context

Number of Batches

1 2 3 4 5 6

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8
Dataset: VIRAT

Strong Teacher

Strong+Weak Techer

All Instances

Weak Teacher

(a) (b)

Number of Batches

1 2 3 4 5 6

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8
Dataset: VIRAT

CAAL

Random

IAM

Entropy

ECG

Amount of Manual Labeling

.17 .25 .34 .42 .50 .59 .67 .75 .83 .92 1.0

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8
Dataset: VIRAT

NC+All

NC+AL

AAC+All

AAC+CAAL

(c) (d)
Figure 1. Plots a, b, c, and d show the performance evaluations for the VIRAT dataset. Plot (a) compares state-of-the-art batch and
incremental methods against the three variants of the proposed approach. These variants are No Context (it only uses the appearance
features with a softmax classifier), A-A context (it uses the spatial-temporal inter-relationship contexts of the activities represented by a
CRF), and A-A-C context (it uses both of the associated object contexts and spatial-temporal inter-relationship context represented by
a CRF). A-A-C test case performs better than all other methods with very less amount of manually labeled data. Plot (b) analyzes the
performances of the four variants of our proposed active learning system. These variants are based on the use of two types of teachers.
These variants are Strong Teacher (it manually labels a fraction of the incoming instances), Weak Teacher (it does not use any manually
labeled data, only uses the highly confident labels provided by the classifier), Strong+Weak Teacher (it uses the labels provided by both of
the above teachers.), and All Instances (it is the most expensive case, where all of the instances are manually labeled). Performance of the
Strong+Weak Teacher is almost similar to All Instances but with very less amount of manually labeled data. It proves the robustness of
our proposed framework. Plot (c) compares our proposed context aware active learning system (CAAL) against the recent active learning
methods and random sampling. CAAL uses the labels provided by both of the strong and the weak teachers. Recent active learning methods
are - incremental activity modeling (IAM), uncertainty of the nodes (Entropy), and expected change of gradients (ECG). Our proposed
active learning system performs better than other active learning approaches. Plot (d) compares the accuracy against the amount of manual
labeling. NC does not use any context information, whereas AAC use both of the spatial-temporal and the object contexts. NC+All and
AAC+All test cases use all manually labeled data. It is evident that AAC+CAAL uses approximately fifty percent manually labeled data
in order to achieve similar performance comparing to batch method that use all manually labeled data.
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1.2. UCLA-Office
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Figure 2. Plots a, b, c, and d show the performance evaluations for the UCLA-Office dataset. Plot (a) compares state-of-the-art batch
and incremental methods against the three variants of the proposed approach. These variants are No Context (it only uses the appearance
features with a softmax classifier), A-A context (it uses the spatial-temporal inter-relationship contexts of the activities represented by a
CRF), and A-A-C context (it uses both of the associated object contexts and spatial-temporal inter-relationship context represented by
a CRF). A-A-C test case performs better than all other methods with very less amount of manually labeled data. Plot (b) analyzes the
performances of the four variants of our proposed active learning system. These variants are based on the use of two types of teachers.
These variants are Strong Teacher (it manually labels a fraction of the incoming instances), Weak Teacher (it does not use any manually
labeled data, only uses the highly confident labels provided by the classifier), Strong+Weak Teacher (it uses the labels provided by both of
the above teachers.), and All Instances (it is the most expensive case, where all of the instances are manually labeled). Performance of the
Strong+Weak Teacher is almost similar to All Instances but with very less amount of manually labeled data. It proves the robustness of
our proposed framework. Plot (c) compares our proposed context aware active learning system (CAAL) against the recent active learning
methods and random sampling. CAAL uses the labels provided by both of the strong and the weak teachers. Recent active learning methods
are - incremental activity modeling (IAM), uncertainty of the nodes (Entropy), and expected change of gradients (ECG). Our proposed
active learning system performs better than other active learning approaches. Plot (d) compares the accuracy against the amount of manual
labeling. NC does not use any context information, whereas AAC use both of the spatial-temporal and the object contexts. NC+All and
AAC+All test cases use all manually labeled data. It is evident that AAC+CAAL uses approximately forty percent manually labeled data
in order to achieve similar performance comparing to batch method that use all manually labeled data.
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1.3. MPII-Cooking
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Figure 3. Plots a, b, c, and d show the performance evaluations for the MPII-Cooking dataset. Plot (a) compares state-of-the-art batch
and incremental methods against the three variants of the proposed approach. These variants are No Context (it only uses the appearance
features with a svm classifier), A-A context (it uses the spatial-temporal inter-relationship contexts of the activities represented by a CRF),
and A-A-C context (it uses both of the associated object contexts and spatial-temporal inter-relationship context represented by a CRF).
A-A-C test case performs better than all other methods with very less amount of manually labeled data. Plot (b) analyzes the performances
of the four variants of our proposed active learning system. These variants are based on the use of two types of teachers. These variants are
Strong Teacher (it manually labels a fraction of the incoming instances), Weak Teacher (it does not use any manually labeled data, only uses
the highly confident labels provided by the classifier), Strong+Weak Teacher (it uses the labels provided by both of the above teachers.),
and All Instances (it is the most expensive case, where all of the instances are manually labeled). Performance of the Strong+Weak Teacher
is almost similar to All Instances but with very less amount of manually labeled data. It proves the robustness of our proposed framework.
Plot (c) compares our proposed context aware active learning system (CAAL) against the recent active learning methods and random
sampling. CAAL uses the labels provided by both of the strong and the weak teachers. Recent active learning methods are - incremental
activity modeling (IAM), uncertainty of the nodes (Entropy), and expected change of gradients (ECG). Our proposed active learning system
performs better than other active learning approaches. Plot (d) compares the accuracy against the amount of manual labeling. NC does
not use any context information, whereas AAC use both of the spatial-temporal and the object contexts. NC+All and AAC+All test cases
use all manually labeled data. It is evident that AAC+CAAL uses approximately forty percent manually labeled data in order to achieve
similar performance comparing to batch method that use all manually labeled data.
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1.4. UCF50
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Figure 4. Plots a, b, c, and d show the performance evaluations for the UCF50 dataset. Plot (a) compares state-of-the-art batch and
incremental methods against the three variants of the proposed approach. These variants are No Context (it only uses the appearance
features with a softmax classifier) and A-A context (it uses the spatial-temporal inter-relationship contexts of the activities represented
by a CRF). A-A test case performs better than all other methods with very less amount of manually labeled data. Plot (b) analyzes the
performances of the four variants of our proposed active learning system. These variants are based on the use of two types of teachers.
These variants are Strong Teacher (it manually labels a fraction of the incoming instances), Weak Teacher (it does not use any manually
labeled data, only uses the highly confident labels provided by the classifier), Strong+Weak Teacher (it uses the labels provided by both of
the above teachers.), and All Instances (it is the most expensive case, where all of the instances are manually labeled). Performance of the
Strong+Weak Teacher is almost similar to All Instances but with very less amount of manually labeled data. It proves the robustness of
our proposed framework. Plot (c) compares our proposed context aware active learning system (CAAL) against the recent active learning
methods and random sampling. CAAL uses the labels provided by both of the strong and the weak teachers. Recent active learning methods
are - incremental activity modeling (IAM), uncertainty of the nodes (Entropy), and expected change of gradients (ECG). Our proposed
active learning system performs better than other active learning approaches. Plot (d) compares the accuracy against the amount of manual
labeling. NC does not use any context information, whereas AAC use both of the spatial-temporal and the object contexts. NC+All and
AAC+All test cases use all manually labeled data.
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2. Dataset Description
2.1. VIRAT

Description The VIRAT dataset is a state-of-the-art human action dataset with many
challenging characteristics such as wide variation in the activities and a
high amount of occlusion and clutter. It consists of surveillance videos
such as parking lot videos involving single vehicle activities, person and
vehicle interactions, and people interactions. There are also some group
activities. This dataset consists of scenes captured on a single camera
although the viewpoint can differ from one scene to the next. In any
scene, the activities can occur at different orientations depending on the
location. However, since these are wide-area videos, persons of interest
are usually far away from the camera.

Number of Scenes 11
Number of Sequences 329
Number of Activities 1555
Number of Activity Types 11
Activity Types Loading an object to a vehicle, Unloading an object from a vehicle,

Opening a vehicle trunk, Closing a vehicle trunk, Getting into a vehicle,
Getting out of a vehicle, Gesturing, Person carrying an object, Person
running, Person entering a facility, and Person exiting a facility.

Associated Object Types Person, Car, Vehicle, Carrying objects, and Bike.
Video Resolution 1920× 1080
Total Video Duration About 5 hours
Wild? Yes
Segmented? No
Background Fixed for a sequence

Go to Table of Contents

2.2. UCLA-Office

Description The UCLA office dataset consists of indoor and outdoor videos of sin-
gle and two-person activities. Here, we perform experiments on the lab
scene containing close to 35 minutes of video captured with a single
fixed camera in a room. There is very little variation in viewpoint, oc-
clusion and scale here. Each activity occurs 6 to 15 times in the dataset.

Number of Scenes 1
Number of Sequences 3
Number of Activities 157
Number of Activity Types 10
Activity Types EnterRoom, ExitRoom, SitDown, StandUp, WorkLaptop, WorkPaper,

ThrowTrash, PourDrink, PickPhone, PlacePhone.
Associated Object Types Laptop, Phone, Paper, Trash, etc.
Video Resolution 1280× 720
Total Video Duration 35 minutes
Wild? No
Segmented? No
Background Fixed

Go to Table of Contents
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2.3. MPII-Cooking

Description This dataset contains fine-grained cooking activities in an indoor set-
tings. 12 participants performed 65 different cooking activities. Partic-
ipants were asked to prepare one to six of a total of 14 dishes such as
fruit salad or cake containing several cooking activities. Activities have
low inter-class variability and high intra-class variability due to diverse
subjects and cooking ingredients. However, activities have very little
occlusion, clutter, or change of viewpoints.

Number of Subjects 12
Number of Sequences 44
Number of Activities 5609
Number of Activity Types 65
Activity Types background, changeTemp, cutApart, cutDice, cutIn, cutOffEnds,

cutOutInside, cutSlices, cutStripes, dry, fillWaterFromTap, grate, lid-
PutOn, lidRemove, mix, move, openEgg, openTin, openCloseCup-
board, openCloseDrawer, openCloseFridge, openCloseOven, pack-
age, peel, plugInOut, pour, pullOut, puree, putInBowl, putInPanPot,
putOnBreadDough, putOnCuttingBoard, putOnPlate, read, remove-
FromPackage, ripOpen, scratchOff, screwClose, screwOpen, shake,
smell, spice, spread, squeeze, stamp, stir, strew, takePutInCupboard,
takePutInDrawer, takePutInFridge, takePutInOven, TakePutInSpice-
Holder, takeIngredientApart, takeOutFromCupboard, takeOutFrom-
Drawer, takeOutFromFridge, takeOutFromOven, takeOutFromSpice-
Holder, taste, throwInGarbage, unrollDough, washHands, washObjects,
whisk, wipeClean.

Associated Object Types hand, bottle, cap opener, mug, beer, tomato, etc.
Video Resolution 1624× 1224
Total Video Duration 8 hours 20 minutes
Wild? No
Segmented? No
Background Fixed

Go to Table of Contents
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2.4. UCF50

Description This dataset contains various types of sports activities in the wild. It has
very low inter-class and very high intra-class variability. Activities have
very high amount of occlusion, clutter and change of viewpoints.

Number of Subjects 25
Number of Sequences 6676
Number of Activities 6676
Number of Activity Types 50
Activity Types BaseballPitch, Basketball, BenchPress, Biking, Billiards, BreastStroke,

CleanAndJerk, Diving, Drumming, Fencing, GolfSwing, HighJump,
HorseRace, HorseRiding, HulaHoop, JavelinThrow, JugglingBalls,
JumpRope, JumpingJack, Kayaking, Lunges, MilitaryParade, Mixing,
Nunchucks, PizzaTossing, PlayingGuitar, PlayingPiano, PlayingTabla,
PlayingViolin, PoleVault, PommelHorse, PullUps, Punch, PushUps,
RockClimbingIndoor, RopeClimbing, Rowing, SalsaSpin, SkateBoard-
ing, Skiing, Skijet, SoccerJuggling, Swing, TaiChi, TennisSwing,
ThrowDiscus, TrampolineJumping, VolleyballSpiking, WalkingWith-
Dog, YoYo.

Associated Object Types —
Video Resolution 320× 240
Total Video Duration About 8 hours
Wild? Yes
Segmented? Yes
Background Dynamic

Go to Table of Contents
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3. Context Features
Contexts may vary based on the application domain. Our proposed generalized framework can handle any number and

types of contexts. In this paper, we use different contexts for different datasets. We describe them below.

3.1. VIRAT

We use both of the spatial-temporal relationships among the activities context and object contexts for this dataset. These
contextual features have been described in the main paper in Equations 2-9.

3.2. UCLA-Office

We only use the spatial-temporal relationships among the activities context for this dataset. This context feature has been
described in the main paper in Equations 2 and 6.

3.3. MPII-Cooking

We use both of the spatial-temporal relationships among the activities context and object contexts for this dataset. Spatial-
temporal relationship context remains the same as in Equations 2 and 6 in the main paper. Activities in this dataset involve
three types of objects - tools (c1i ), ingredients (c2i ), and containers (c3i ). We use each of them as a separate context and
formulate them as like in Equations 3, 4, 7, and 8. So the Equations 3 and 7 will become,

φ(ci, zi) = φ(c1i , zi)� φ(c2i , zi)� φ(c3i , zi)

ψ(ai, ci) = ψ(ai, c
1
i )⊗ ψ(ai, c

2
i )⊗ ψ(ai, c

3
i )

3.4. UCF50

Since the activities in UCF50 dataset are segmented, there are no natural spatial-temporal relationships exist among the
activities. Also, each activity involves a person and a particular tool. Use of object context might overfit the model. So, we
improvise a relationship among the activities. We roughly categorize fifty activity classes into eight groups and assume that in
each group activities are inter-related. These groups are - Outdoor Group Sports (BaseballPitch, Basketball, VollyballSpiking,
TennisSwing, HorseRace, and Rowing), Outdoor Individual Sports (GolfSwing, HighJump, JavelinThrow, Kayaking, Skiing,
SoccerJuggling, ThrowDiscuss, and PoleVolt), Indoor Sports (Billiards, CleanAndJerk, Fencing, PommelHorse, Punch, and
RockClimbing), Outdoor Activity (Biking, Diving, MilitaryParade, NunChucks, HorseRiding, RopeClimbing, SkateBoard-
ing, SkiJet, Swing, and TampolineJumping), Indoor Activity (SalsaSpin, BreastStroke, HulaHoop, JugglingBalls, and YoYo),
Physical Exercise (BenchPress, JumpingJack, JumpRope, TaiChi, Walking, PullUps, PushUps, and Lunges), Kitchen (Mix-
ing and PizzaTossing), and Instrumental (Drumming, PlayingGuitar, PlayingPiano, PlayingTabla, and PlayingViolin). The
corresponding mathematical formulations remain same as like Equations 2 and 6 of the main paper.
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4. Evaluation of Continuous Learning on Individual Activities
4.1. VIRAT
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Figure 5. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show some of the successful examples, where continuous learning helps to obtain the
correct label with a higher probability even though some of them were miss-classified initially. Best viewable in color.
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Figure 6. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show few failure cases. Best viewable in color.
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4.2. UCLA-Office
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Figure 7. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show some of the successful examples, where continuous learning helps to obtain the
correct label with a higher probability even though some of them were miss-classified initially. Best viewable in color.
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Figure 8. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show few failure cases. Best viewable in color.
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4.3. MPII-Cooking
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Figure 9. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show some of the successful examples, where continuous learning helps to obtain the
correct label with a higher probability even though some of them were miss-classified initially. Best viewable in color.
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Figure 10. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show few failure cases. Best viewable in color.
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4.4. UCF50
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Figure 11. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show some of the successful examples, where continuous learning helps to obtain the
correct label with a higher probability even though some of them were miss-classified initially. Best viewable in color.
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Figure 12. Evaluation of continuous learning on individual activities. Activity with green color means the ground truth class, whereas
activities with red color means false predictions. Grey bars represent probability scores. Here, we show the results obtained after the arrival
of batch 1, 3, and 5 data. The plots in this figure show few failure cases. Best viewable in color.
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5. Activity Class-wise Performance Evaluation
5.1. VIRAT
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Figure 13. Activity class-wise performance evaluation of our proposed framework. This figure shows some selected activity classes of
VIRAT dataset. In most of the cases, recognition performance of our framework for a particular class improves with the availability of new
training data.
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5.2. UCLA-Office
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Figure 14. Activity class-wise performance evaluation of our proposed framework. This figure shows some selected activity classes of
UCLA-Office dataset. In most of the cases, recognition performance of our framework for a particular class improves with the availability
of new training data.
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5.3. MPII-Cooking
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Figure 15. Activity class-wise performance evaluation of our proposed framework. This figure shows some selected activity classes of
MPII-Cooking dataset. In most of the cases, recognition performance of our framework for a particular class improves with the availability
of new training data.
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5.4. UCF50
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Figure 16. Activity class-wise performance evaluation of our proposed framework. This figure shows some selected activity classes of
UCF50 dataset. In most of the cases, recognition performance of our framework for a particular class improves with the availability of new
training data.
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6. Parameter Values
We learn most of the parameters from training data. We manually set only three parameters - manual labeling percentage

(K), weight decay parameter (λ) of our baseline softmax classifier (Section 4.1 of the main paper), and the weak teacher
threshold parameter (δ). We provided the sensitivity analysis of K as the accuracy vs. manual labeling plot in the Figure 5(d,
h, l, and p) of the main paper for all datasets. Here, we present the values of K, λ, and δ that we used during our experiments
for all datasets followed by the sensitivity analysis of λ and δ for VIRAT dataset.

Dataset
Parameters VIRAT UCLA-Office MPII-Cooking UCF50

K 0.5 0.5 0.5 0.5
λ 10−1 10−2 (used lin. svm) 10−4

δ 0.9 0.9 0.9 0.9
Table 1. Parameter Values

6.1. Parameter Sensitivity
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Figure 17. Plot (a) illustrates the sensitivity analysis of the parameter λ. It shows that the choice of λ has significant effect on the
performance, however performance of the framework is quite similar in range of 10−2 − 10−4. Plot (b) illustrates the sensitivity analysis
of the parameter δ. Our framework performs better for the higher values of δ. It means that for a higher value of δ the framework will use
very high confident labels from the classifier to retrain it. For a lower value of δ, it may be possible that some of the misclassified instances
are used for retraining, which is the reason for inferior performance. Above two experiments use Strong+Weak Teacher active learning
system.
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