
An Improved Pipelined Processor Architecture Eliminating Branch and
Jump Penalty

Md. Raqibul Hasan
Bangladesh University of

Engineering and Technology
raqib cse@yahoo.com

M. Sohel Rahman
Bangladesh University of

Engineering and Technology
msrahman@cse.buet.ac.bd

Masud Hasan
Bangladesh University of

Engineering and Technology
masudhasan@cse.buet.ac.bd

Md. Mahmudul Hasan
East West University,

Bangladesh.
mmhh@edubd.edu

M. Ameer Ali
East West University,

Bangladesh.
maa@ewubd.edu

Abstract— Control dependencies are one of the major limita-
tions to increase the performance of pipelined processors. This
paper deals with eliminating penalties in pipelined processor.
We present our discussion in the light of MIPS pipelined
processor architecture. Here we present an improved pipelined
processor architecture eliminating branch and jump penalty. In
the proposed architecture CPI for branch and jump instruction
is less than that of MIPS architecture. We also have shown the
design of the required cache memory cell for the improved
architecture.

I. INTRODUCTION

Most modern microprocessor designs use pipelining [1,2]
to significantly increase performance. Pipeline is an im-
plementation technique in which multiple instructions are
overlapped in execution. In pipelining the expectation is to
fetch instruction1 in each clock cycle.

The operational steps in pipelined architecture are called
pipeline stages. In MIPS pipelined architecture [2,3] there
are five pipeline stages, including instruction fetch (IF),
instruction decode (ID), execution (EX), memory access
(MEM) and result writeback (WB). It is important that the
operation time of each pipeline stage is almost identical,
since the rate at which instructions flow through the pipeline
is limited by the slowest pipeline stage. To retain the operand
and control signals of an individual instruction for its other
stages, the operand and control signals are saved in a register
called pipeline register. In MIPS architecture we have four
such registers.

IF/ID is the pipeline register between instruction fetch (IF)
and instruction decode (ID) stage.

Similarly the remaining three pipeline registers are named.
Recall that the typical operational steps in the execution

of an instruction. Let the instruction pointed by PC (program
counter) is fetched in the i-th clock cycle. Simultaneously at
the end of that clock cycle PC is incremented to point the
next instruction. In the i + 1-th clock cycle the instruction
is in ID pipeline stage. Here the register values that will

1Reading the instruction from memory and placing in the IF/ID pipeline
register. The notation IF/ID is defined later.

be used in EX stage are accessed from register file 2. In the
next clock cycle i.e i+2-th the instruction is in EX stage and
required operation in the ALU (arithmetic and logic unit) is
performed. If the instruction requires to access memory, it is
done in the i+3-th clock cycle. i+4-th is the last operational
clock cycle for that instruction. In this clock cycle result of
arithmetic operation or accessed data from memory is written
in destination register if required.

A branch is a point in a computer program where the
flow of control is altered. A branch may be taken or not
taken. If a branch is not taken, the flow of control is
unchanged and the next instruction to be executed is the
instruction immediately following the current instruction
in memory; if taken, the next instruction to be executed
is an instruction at some other place in memory (branch
destination instruction). Branch instructions can reduce the
performance of pipelines by interrupting the steady flow of
instructions into the pipeline. To execute a branch instruction,
the processor must decide whether the branch is taken, calcu-
late the branch’s destination address. Calculating destination
address and checking branch condition may be conducted
in parallel. But the destination instruction can be fetched
only after calculating the destination address if branch target
buffer (BTB) is not used. Branch hurt performance because
these tasks can not be performed in one clock cycle.There
are some techniques for reducing branch penalty [4]. For
further improved performance now branch prediction [5,6,7]
is used. If the prediction is correct there is no penalty. But if
prediction is incorrect there is a penalty of one clock cycle.

In this paper we are concerned about improving perfor-
mance of branch instruction. Remaining improved features
will come as the consequence of improving the former
feature. The rest of the sections are organized as follows.
In Section 2 we briefly review the execution of branch
instruction in current MIPS architecture. In section 3 we have
presented our proposed architecture eliminating branch and
jump penalty. Finally, we briefly conclude in Section 4.

2A state element that consists of a set of registers that can be read or
written by supplying a register number to be accessed.

2010 Second International Conference on Computer Engineering and Applications

978-0-7695-3982-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCEA.2010.126

621

Fig. 1. The MIPS architecture.

II. EXECUTION OF BRANCH INSTRUCTION IN MIPS

In MIPS architecture length of each instruction is 32 bit
(4 byte). In branch instruction there is a offset of 16 bit and
id3 (identification number) of two registers which determine
whether the branch will be taken or not taken. Here is the

op rs rt offset
6 bit 5 bit 5 bit 16 bit

Fig. 2. Machine code format of branch instruction in MIPS.

meaning of each names of the fields in the machine code of
branch instruction.

op: Basic operation of the instruction, traditionally called
opcode.

rs: The first register source operand.
rt: The second register source operand.
offset: Distance of the destination instruction in number of

instruction from the branch instruction. As each instruction
length is 4 byte, here branch range is 4 times larger than
that of if distance of destination instruction is measured in
number of byte.

Branch destination address is calculated as follows
PCnew = PC(of branch inst.) + 4 + offset (sign

extended, 2 bit left shifted)
There are two types of branch instruction in MIPS e.g beq

and bne. In case of beq branch is taken if rs and rt registers
are equal, otherwise not taken. On the other hand in case
of bne branch is taken if rs and rt are not equal, otherwise
not taken. All the executional steps of these two instructions
are almost similar except role of some selection signals
(zero flag). When executing a branch instruction operations
performed in each pipeline stages are as follows:

IF: Branch instruction is fetched from the instruction
memory and the PC is incremented.

3Can be treated as address of a register.

ID: Two register rs and rt are read from register file.
EX: The ALU performs a subtract on the data values read

from the register file. The value of PC+4 is added to the
sign-extended, lower 16 bit of the instruction (offset) shifted
left by two; the result is the branch destination address.

MEM: The zero flag from the ALU is used to decide
whether PC+4 or destination address will be stored in PC.

So if a branch instruction is fetched in i-th clock cycle, the
next instruction can be fetched confidently in i + 4-th clock
cycle. As a result there may be a penalty of three clock
cycle i.e three wrong instruction may be fetched which have
to flush4.

Here the next PC for a branch is selected in the MEM
stage. To obtain better performance branch execution is
moved earlier in the pipeline. Moving the branch decision
up requires two actions to occur earlier: computing the
branch destination address and evaluating the branch deci-
sion. Branch address is calculated in ID stage as value of
PC+4 is already present in IF/ID pipeline register. Equality of
two register is tested by first exclusive ORing their respective
bits and then ORing all the results. This is done in the ID
stage after accessing register values from register file. As a
result if a branch instruction is fetched in i-th clock cycle,
next instruction can be fetched confidently in i + 2-th clock
cycle. So the branch penalty is reduced to one clock cycle.

The branch target buffer (BTB) [7,8] is used to reduce the
performance penalty of branches by predicting the path of
the branch and caching information about the branch. Branch
target buffer (BTB) stores the destination address of the last
target location to avoid recomputing.

If a branch instruction is fetched and prediction for that
instruction is taken, then the destination instruction is fetched
in the next clock cycle. If the corresponding prediction is
not taken, then the next sequential instruction pointed by
PC is fetched from memory in the next clock cycle. If the

4To discard instructions in pipeline, usually due to unexpected event.

622

prediction is wrong, then the incorrect instruction is deleted
which causes a loss of one clock cycle. Assume that the
fraction of branch instructions predicted incorrectly is P i.e
P×100% branch instructions are predicted incorrectly. Then
in MIPS architecture CPI (clock per instruction) for branch
instruction using branch prediction and branch target buffer
is 1+P .

Delayed branch [9] is a simple solution for branch cost. A
delayed branch always executes the following instruction, but
the second instruction following the branch will be affected
by the branch. Compilers and assemblers try to place an
instruction that always executes after the branch. But most of
the time delayed branch can not provide good performance.

III. THE PROPOSED ARCHITECTURE

This section presents the proposed architecture eliminating
branch and jump penalty. Recall that in MIPS architecture,
if the branch is taken the calculation of the target address
require one clock cycle. PCnew = PCold + 4 + offset
(sign extended & 2 bit left shifted). To reduce the cost of
destination address calculation we generate the destination
address in a different way. Here we shall consider segmented
memory. The address of a memory location is determined by
corresponding segment number and segment offset. We have
modified the machine code format of branch instruction as
follows.

op rs rt selection segment offset
6 bit 5 bit 5 bit 2 bit 14 bit

Fig. 3. Machine code format of branch instruction in the proposed
architecture.

Least significant two bit of each instruction address is ’00’
as each instruction is 4 byte. In branch instruction segment
offset field is of 14 bit. If the 14 bit offset is left shifted
two bit we shall get 16 bit number. So most significant 16
bit of the 32 bit address [31:0] is chosen for the segment
number and least significant 16 bit for segment offset. Let
current segment of PC is denoted by PCseg. Then PCseg-
1 and PCseg+1 are the upper and lower segments of PCseg
respectively. PCseg±2 will be PCseg-2 if current PC is in the
upper half portion of PCseg and PCseg+2 otherwise. For the
branch destination calculation we shall get the segment offset
from the instruction and for segment number we shall take
any one of PCseg, PCseg-1, PCseg+1 or PCseg±2 according
to the selection bit in the branch instruction.

Branch destination address = [PCseg-1|5 PCseg | PCseg+1
| PCseg±2] o 6 [14 bit offset shifted left by two bit].

We shall keep the value of PCseg-1, PCseg, PCseg+1
and PCseg±2 in four registers. If current segment of PC is
changed for increment of PC or for update of PC by branch
or jump destination address PCseg-1, PCseg, PCseg+1 and
PCseg±2 are updated. PCseg±2 is also updated if PC
change position from upper half portion of PCseg to lower

5This symbol represents OR.
6This symbol represents concatenation.

half portion or vice versa. The time required to calculate
destination address is the time required to select a segment
from four segments according to the selection bit i.e the
propagation delay of a 4 to 1 mux which is very smaller
than that of a 32 bit adder used in MIPS. Here our candidate
segments are PCseg-1, PCseg, PCseg+1 and PCseg±2 as we
have two selection bit.

Fig. 4. The Proposed architecture.

In Figure 5 selection signal for mux1 type mux depends
on branch condition and selection signal for mux2 (mux3)
type mux comes from 15-th bit of PC+4 (branch destination
+ 4), where bits of 32 bit address are numbered as [31:0].

If a branch instruction is fetched in the i-th clock cycle, in
the i + 1-th clock cycle we shall try to read two instruction
simultaneously, one addressed by PC and another addressed
by destination address. Then we shall load one of the two in-
structions in the IF/ID pipeline register depending on branch
condition. Here we require memory (instruction cache) that
is capable to read two location simultaneously addressed by
two different addresses. First we shall discuss how assembler
will be modified to cope with the new destination address
calculation and later about required new memory. Here we
are not discussing data forwarding and exception handling
units because these units will remain same as in MIPS.

A. Modification of Assembler

Segment offset represent the position of the instruction
in a particular segment. To determine the machine code for
the assembly instruction beq $1,$2,target the assembler has
to determine the segment offset of the target instruction
and have to determine whether the segment number of
target instruction is PCseg, PCseg-1, PCseg+1 or PCseg±2.
Obviously it is possible by implementing the assembler

623

Fig. 5. Circuit for updating PCseg, PCseg+1, PCseg-1 and PCseg±2.

appropriately. Here we have to restrict the loader7 such that it
copies the instructions of a program starting at the beginning
of a segment. So the assembler can determine the segment
offset of the target address and it is also determinable
whether the target address is in the segment PCseg, PCseg-
1, PCseg+1 or PCseg±2. The selection field in the machine
code of branch instruction will be filled on the basis of the
segment number of the targer address according to the table
in Figure 6. Other remaining fields will be handled as like

segment number selection
PCseg 00

PCseg-1 01
PCseg+1 10
PCseg±2 11

Fig. 6. Selection bit in machine code of branch instruction.

in MIPS.

B. Modified Instuction Cache Cell

In the conventional memory there is one address line and
a corresponding data line i.e at a time one address can be
provided as input. Pipelined architectures use two memories,
one for instruction and another for data. The use of two
memory is obvious. If in a particular clock cycle instruction
in the MEM stage is load or store then it require memory
access for data. At the same time fetching new instruction

7A system program that places an object program in main memory so
that it is ready to execute.

in the IF stage require memory read. Without two memory
the pipeline could have a structural hazard8. So the use of
two memory is obvious. As now we are using hierarchical
memory we require two cache memory, one for instruction
and another for data. In this case only one RAM (main
memory) will provide our requirement. Moreover in most of
the systems separate cache for instruction and data is used.
Because with unified cache, a program that is data-intensive
quickly fill the cache, allowing little room for instructions.
This slows the execution speed of the processor.

In the proposed architecture we are going to use an
instruction cache that is capable to read two location si-
multaneously addressed by two different addresses. In the
modified instruction cache we have two independent sets
of address and data lines e.g address line1, corresponding
data line1 and address line2, corresponding data line2. We
can give two independent address in the two address lines
simultaneously and corresponding contents will be available
in the corresponding data lines with the same propagation
delay of single address and data line cache.

2-D memory [10] is widely used in most of the appli-
cations. In 2-D memory there are two selection lines X
(row selector) and Y (column selector) generated by address
decoders (row decoder & column decoder) are used to select
a memory cell [11]. In such memory n-bit address is divided
into two parts, one part is given as the input to the row
decoder and another part is given to the column decoder.

Fig. 7. Six transistor static memory cell.

In the modified cache memory we have two sets of se-
lection lines X1,Y1 and X2,Y2 generated from row, column
decoder1 and row, column decoder2. Row, column decoder1
for address line1 and row, column decoder2 for address
line2. In Figure 8 MOS transistor diagram of a modified
cache memory cell is given. Here we require one additional
MOS transistor (T1) for each memory cell (bit). Transistor
T2 is additional for each column.

8An occurrence in which a planned instruction can not execute in the
proper clock cycle because the hardware cannot support the combination of
instructions that are set to execute in the given clock cycle.

624

Fig. 8. Modified memory cell.

C. Eliminating Branch Penalty

Assume that a branch instruction is fetched in the i-th
clock cycle. In the i + 1-th clock cycle we shall read two
instruction simultaneously, one addressed by PC through
address and data line1 and another one addressed by branch
destination address (computation of which require very small
time) through address and data line2. Then at the end of the
i+1-th clock cycle we shall load one of the two instructions
in the IF/ID pipeline register depending on branch condition.
Thus the branch instruction has no penalty. Here we want to
denote that we no longer require branch predictor and branch
target buffer.

D. Eliminating Jump Instruction Cost

There is also improvement for jump instruction.
jump destination= [most significant 4 bit of PC +

4] o [2 bit left shifted least significant 26 bit of the jump
instruction]

In MIPS architecture for jump instruction first PC is
updated with the jump target address and in the following
clock cycle target instruction is fetched. So CPI for jump
instruction is 2.

As we require no time to generate the jump address as like
branch destination address. If a jump instruction is fetched
in a particular clock cycle then in the following clock cycle
through address and data line1 we shall access instruction
addressed by jump destination not by PC. In that clock PC
will be updated with jump destination + 4.

IV. CONCLUSION

In this paper we have presented an architecture that elim-
inates branch and jump penalty completely. In the proposed
architecture the CPI for branch instruction is less than that
of MIPS architecture and it is 1 instead of 1.25 if P=0.25 is
assumed. CPI for jump instruction is 1 instead of 2. Here we
no longer require branch predictor and branch target buffer.

REFERENCES

[1] P.M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill,
1981

[2] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, Elsevier Inc., 2005

[3] G. Kane, MIPS RISC Architecture, Prentice Hall, 1989
[4] S. McFarling, J. HenneseyReducing the cost of branches, Proceedings

of the 13th annual international symposium on Computer architecture
(ISCA ’86) Pages: 396 - 403

[5] J.E. Smith, A Study of Branch Prediction Strategies,Proc. Eighth
Symp. Computer Architecture, May 1981, pp. 135-148

[6] J.K.F. Lee and A.J. Smith, Branch Prediction Strategies and Branch
Target Buffer Design, Computer, Jan. 1984, Volume 17,pp. 6-22

[7] R. Nair, Optimal 2-Bit Branch Predictors, Trans. Computers, volume
44, p. 698-702 (1995).

[8] C. Perleberg and A. J. Smith, Branch Target Buffer Design and
Optimization, IEEE Trans. Computers, volume 42, p. 396-412 (1993).

[9] T. R. Gross , John L. Hennessy, Optimizing delayed branches, Proceed-
ings of the 15th annual workshop on Microprogramming, p.114-120,
October 05-07, 1982, Palo Alto, California, United States

[10] Luecke, G., J.P. Mize and W.N. Carr, Semiconductor Memory Design
and Applications, chap. 3, McGraw-Hill Book Company, New York,
1973

[11] Terman, L.M., MOSFET memory Circuits, Proc. IEEE, vol. 59, no.
7,pp.1044-1059, July 1971

625

