Bourns College of Engineering
Video Computing Group

K

o

‘Continuous Learning of Human Activity Models using Deep Nets

Mahmudul Hasan and Amit K. Roy-Chowdhury
University of California Riverside, CA-92521, USA.

European Conference
on Computer Vision

/

4 N

Motivation

1 Activity recognition strategies assume large amounts of labeled training
data which require tedious human labor to label.

-l They also use hand engineered features, which are not best for all
applications, hence required to be done separately for each application.

1 Several recognition strategies have benefited from deep learning for
unsupervised feature selection, which has two important property — fine
tuning and incremental update.

Question!

Can deep learning be leveraged upon for continuous learning of activity
models from streaming videos?

Contributions

We propose a novel framework
for continuous learning of activity
models from streaming videos by

Intricately tying together deep S EaLLasuaiia
learning and active learning. Anewactinity oceumngl
G 0 al S —>|Current Modell>Our Frameworki>{Improved Modell—>

1 Automatically learning the best set of features in unsupervised manner.

1 Reducing the amount of manual labeling of the unlabeled instances.

1 Retaining already learned information without storing all the previously
seen data and continuously improve the existing activity models.
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Effect of continuous learning on individual activity instances.
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Active Learning

Two types of teacher —

1. Strong teacher — Human
2. Weak teacher — Classifier

We select one of them based on the ®(x*).
Expected Gradient Length —
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Incremental Learning
Mini-batch incremental learning

‘ VQj]S(H) H

Feature

Input
Autoencoder training

Output

Training:
Initialize W= [W',W? b’ b?]
Repeat for 1=1:m

Perform feedforward pass:
Compute: o
Perform backpropagation:
Compute gradients: VyJa(W).
Compute weight change: AW.
Update weight W.
Feature Encoding:
Compute: %' = f(W'x' +b').

Most diverse instance selection

Else

Initialize the weights.
Repeat the following steps:
If u training instances available:
Process u training instances.
Compute gradients.
Update the weights.

Wait for stream data to arrive

Repeat for each class c.

Available instances: N..

Available memory spaces: K.

If K. < Ng:
Use kmean clustering algo. to

compute K. clusters from N..

Assign N. inst. to K: clusters.
Store one instance per cluster.

Else

Experiments

! Four datasets —

! KTH - 6 classes, 600 Ins.

! UCF11 - 11 classes, 1600 ins.
! VIRAT — 11 classes, ~12hrs.
! TRECVID - 3 classes, 40hrs.

Dataset: KTH

1 Four test Scenarios

1 A1F1 — Active Learning + Fixed buffer.

1 A1FO — Active Learning + Infinite buffer.
1 AOF1 — No active learning + Fixed buffer.
1 AOFO — No active learning + infinite buffer.
Dataset: UCF11
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Dataset: VIRAT
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Dataset: Trecvid
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Averaged performance over all activity classes Effect of Deep Learning

Increases as the new instances become available.
Dataset: KTH
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Performance of continuous learning over each activity class.

Summary

1 Deep learning has significant impact on learning activity models continuously.

1 Most realistic method Al1F1 which is comprised of deep learning, active
learning, and fixed buffer can achieve performance close to AOFO which
approximates the batch methods in the existing literature.

1 When all the instances are seen, final accuracies of our methods in A1F1 are
very competitive with state-of-the-art works.
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